Problem 1.33

Under what conditions does the differential equation $y^{\prime}=f(x, y)$ have an integrating factor of the form $I(x y)$?

Solution

Bring $f(x, y)$ to the left side.

$$
-f(x, y)+\frac{d y}{d x}=0
$$

Multiply both sides by the integrating factor $I(x y)$.

$$
-I(x y) f(x, y)+I(x y) \frac{d y}{d x}=0
$$

In order for the ODE to be exact, we require that

$$
\frac{\partial}{\partial y}[-I(x y) f(x, y)]=\frac{\partial}{\partial x}[I(x y)] .
$$

Evaluate the partial derivative on each side.

$$
-x I^{\prime}(x y) f(x, y)-I(x y) \frac{\partial f}{\partial y}=y I^{\prime}(x y)
$$

Bring $x I^{\prime} f$ to the right side and factor I^{\prime}.

$$
-I(x y) \frac{\partial f}{\partial y}=[y+x f(x, y)] I^{\prime}(x y)
$$

Make the substitution,

$$
s=x y \quad \rightarrow \quad \frac{s}{x}=y .
$$

We have to write f_{y} in terms of the new variable now using the chain rule.

$$
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial s} \frac{\partial s}{\partial y}=x \frac{\partial f}{\partial s}
$$

Plugging these expressions into the ODE, it becomes

$$
-I(s)\left(x \frac{\partial f}{\partial s}\right)=\left(\frac{s}{x}+x f\right) \frac{d I}{d s} .
$$

Multiply both sides by x.

$$
\begin{equation*}
-I(s)\left(x^{2} \frac{\partial f}{\partial s}\right)=\left(s+x^{2} f\right) \frac{d I}{d s} \tag{1}
\end{equation*}
$$

In order for this to be a legitimate ODE for I, only s can be present in the equation. We need $x^{2} f_{s}$ to be some function of s and $x^{2} f$ to be a function of s as well. That is,

$$
x^{2} f(x, s)=F(s),
$$

where F is an arbitrary function of s. Changing back to the original variable y, we see that the function f has to have the form,

$$
f(x, y)=\frac{F(x y)}{x^{2}},
$$

in order for $I(x y)$ to be an appropriate integrating factor. One can solve (1) to find I given f.

$$
-I(s) F^{\prime}(s)=[s+F(s)] \frac{d I}{d s}
$$

